
Algorithms & Data Structure I

Syrian Private University

Instructor: Dr. Mouhib Alnoukari

Lists

Data Structure

Outline

This topic will describe:
– The concrete data structures that can be used to

store information.

– The basic forms of memory allocation:
• Contiguous

• Linked

• Indexed

– The prototypical examples of these: arrays and
linked lists.

– Finally, we will discuss the run-time of queries
and operations on linked lists.

What is Data Structures?

– A data structure is defined by
• (1) the logical arrangement of data elements,

combined with

• (2) the set of operations we need to access the
elements.

- Atomic variables can only store one value at a time.

int num;

float s;

– A value stored in an atomic variable cannot be
subdivided.

Memory Allocation

Memory allocation can be classified as
either:

– Contiguous

– Linked

– Indexed

Prototypical examples:

– Contiguous allocation: arrays

– Linked allocation: linked lists

Contiguous Allocation

An array stores n objects in a single contiguous space of

memory.

Unfortunately, if more memory is required, a request for

new memory usually requires copying all information into

the new memory.

In general, you cannot request for the operating

system to allocate to you the next n memory

locations.

Linked Allocation

Linked storage such as a linked list

associates two pieces of data with each

item being stored:

– The object itself, and

– A reference to the next item

Linked Allocation

For a linked list, however, we also require an object

which links to the first object.

The actual linked list class must store two pointers:

– A head and tail:

Node *head;

Node *tail;

Optionally, we can also keep a count

int count;

The next_node of the last node is assigned nullptr

Indexed Allocation

With indexed allocation, an array of pointers

(possibly NULL) link to a sequence of allocated

memory locations.

Indexed Allocation

Matrices can be implemented using

indexed allocation:

1 2 3

4 5 6

 
 
 

Indexed Allocation

Matrices can be implemented using indexed allocation

– Most implementations of matrices (or higher-dimensional

arrays) use indices pointing into a single contiguous block

of memory.

Row-major order Column-major order

C, Python Matlab, Fortran

1 2 3

4 5 6

 
 
 

Double Linked List

Double Linked List - Search

Q(n)

List-Search (L, 4)?

Double Linked List - Insert

O(1)

List-Insert (L, 25)

Double Linked List - Delete

List-Delete (L, 4)

O(1)

Algorithm run times

Once we have chosen a data structure to
store both the objects and the relationships,
we must implement the queries or operations
as algorithms:
– The data structure will be defined by the member

variables.

– The member functions will implement the
algorithms.

The question is, how do we determine the
efficiency of the algorithms?

Operations

We will us the following matrix to describe

operations at the locations within the structure.

Front/1st Arbitrary
Location

Back/nth

Find ? ? ?

Insert ? ? ?

Erase ? ? ?

Operations on Sorted Lists

Given an sorted array, we have the following run times:

Front/1st Arbitrary
Location

Back/nth

Find Good Okay Good

Insert Bad Bad Good* Bad

Erase Bad Bad Good

* only if the array is not full

Operations on Lists

If the array is not sorted, only one

operations changes:

Front/1st Arbitrary
Location

Back/nth

Find Good Bad Good

Insert Bad Bad Good* Bad

Erase Bad Bad Good

* only if the array is not full

Operations on Lists

However, for a singly linked list where we a head and tail

pointer, we have:

Front/1st Arbitrary
Location

Back/nth

Find Good Bad Good

Insert Good Bad Good

Erase Good Bad Bad

Operations on Lists

If we have a pointer to the kth entry, we can insert or
erase at that location quite easily

– Note, this requires a little bit of trickery: we must modify
the value stored in the kth node

Front/1st Arbitrary
Location

Back/nth

Find Good Bad Good

Insert Good Good Good

Erase Good Good Bad

Operations on Lists

For a doubly linked list, one operation becomes more

efficient:

Front/1st Arbitrary
Location

Back/nth

Find Good Bad Good

Insert Good Good Good

Erase Good Good Good

Definition

An Abstract List (or List ADT) is linearly

ordered data where the programmer explicitly

defines the ordering.

We will look at the most common operations

that are usually

– The most obvious implementation is to use either

an array or linked list.

– These are, however, not always the most optimal.

Operations

Operations at the kth entry of the list

include:

Access to the object Erasing an object

Insertion of a new object Replacement of the object

Operations

Given access to the kth object, gain access

to either the previous or next object

Given two abstract lists, we may want to

– Concatenate the two lists

– Determine if one is a sub-list of the other

Locations and run times

The most obvious data structures for implementing an

abstract list are arrays and linked lists

– We will review the run time operations on these structures

We will consider the amount of time required to perform

actions such as finding, inserting new entries before or

after, or erasing entries at

– the first location (the front)

– an arbitrary (kth) location

– the last location (the back or nth)

The run times will be Q(1), O(n) or Q(n)

Linked lists

We will consider these for

– Singly linked lists

– Doubly linked lists

Singly linked list

Front/1st node kth node Back/nth node

Find Q(1) O(n)* Q(1)

Insert Before Q(1) O(n)* Q(n)

Insert After Q(1) Q(1)* Q(1)

Replace Q(1) Q(1)* Q(1)

Erase Q(1) O(n)* Q(n)

Next Q(1) Q(1)* n/a

Previous n/a O(n)* Q(n)

* These assume we have already accessed the kth entry—an O(n) operation

Doubly linked lists

Front/1st node kth node Back/nth node

Find Q(1) O(n)* Q(1)

Insert Before Q(1) Q(1)* Q(1)

Insert After Q(1) Q(1)* Q(1)

Replace Q(1) Q(1)* Q(1)

Erase Q(1) Q(1)* Q(1)

Next Q(1) Q(1)* n/a

Previous n/a Q(1)* Q(1)

* These assume we have already accessed the kth entry—an O(n) operation

Doubly linked lists

kth node

Insert Before Q(1)

Insert After Q(1)

Replace Q(1)

Erase Q(1)

Next Q(1)

Previous Q(1)

Accessing the kth entry is O(n)

Other operations on linked lists

Other operations on linked lists include:

– Allocation and deallocating the memory requires Q(n) time

– Concatenating two linked lists can be done in Q(1)

• This requires a tail pointer

Memory usage versus run times

As well as determining run times, we are also interested

in memory usage

In general, there is an interesting relationship between

memory and time efficiency

For a data structure/algorithm:

– Improving the run time usually

requires more memory

– Reducing the required memory

usually requires more run time

Memory usage versus run times

Warning: programmers often mistake this to
suggest that given any solution to a problem,
any solution which may be faster must
require more memory.

This guideline not true in general: there may
be different data structures and/or algorithms
which are both faster and require less
memory.
– This requires thought and research.

Summary

In this topic, we have introduced Abstract

Lists

– Explicit linear orderings

– Implementable with arrays or linked lists
• Each has their limitations

• Introduced modifications to reduce run times down to Q(1)

– Discussed memory usage

